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2.  Complex Dynamics:  

a. The Logistic Map 

 
A simple laser amplification 

system that shows both orderly 

and chaotic behavior is illus-
trated in Fig. 5. This somewhat 

schematic situation represents 

many actual systems in chemis-
try, physics, and other branches 

of science. For example, it can 

stand for the excitation of vibra-
tional modes in molecular colli-

sions or describe population dy-

namics.  
The gas atoms in the laser cell 

are excited initially by a flash-

light (Lamp Q) to a maximum 
population inversion (normalized to) I = 1. Then, at some time, 

an initial laser pulse of intensity I0 < 1 is emitted from the cell and 

deflected by mirrors back into the cell. Here, it will partially be 
absorbed by exciting gas atoms, but will also stimulate emission 

of light with the same frequency. Consequently, another pulse will 

emerge from the cell with intensity I1 which must be proportional 
to the incoming intensity I0. It is also proportional to the maximum 

intensity possible, i.e., proportional to the content (1 - I0) of the 

cell remaining after the previous pulse has been emitted. 

 

This is a repetitive process, where the intensity In+1 of the out-

going pulse depends on the intensity In of the previous, incoming, 
pulse. Keeping track only of the last pulse and neglecting the small 

change in the population inversion, for simplicity, one arrives at 

the iterative map 
 

   In+1 =  · In ·( 1 - In )  or  f( I ) =· I ( 1 - I )   (I>0)   (4) 

 

 

 

Lamp Q 

Laser Cell 

Mirror 

Pulse 

Nonlinear Laser Amplifier 

 
 

Figure 5: Experimental setup of la-

ser racetrack. 
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Here, the quantity  is the overall gain or 

amplification factor of the setup. Such 

functions f(I) determining the behavior of 
a dynamical system by iteration 

 

I, f(I), f(f(I)), f(f(f(I))), f(f(f(f(I)))), ........ 
 

are called mappings or maps. The above 

map (Equ. 4) is known as quadratic or “lo-
gistic map”, because one of the situations 

it describes is the development of a popu-

lation I for a constant overall food supply. 
In this latter case, I = 1 is the maximum 

sustainable population, and the food sup-

ply remaining, once a population of the size I has been satisfied, 
is proportional to (1 - I). Then, the population is expected to grow, 

generation by generation, like In+1 In (1 - In), which is equivalent 

to Equ. (4). 
 

To get an idea of the sequence of steps given by a map, one 

can apply the simple graphic procedure illustrated in the sketch. 
The forward trajectory of the system following the map f is given 

by the sequence I, f(I), f 2(I),....., f n(I),....., the backward trajec-

tory is given by I, f -1(I), f -2(I), ......, f -n(I),..... The sequence can 
be viewed as a “staircase” defined by the curve f(I) and y(I) = I.  

The point I0 is a “periodic” point, if f n(I0) = I0 . A fixpoint is 

defined by the condition f(I0) = I0 and represents, graphically, an 
intersection between the curves f(I) and y(I) = I. Fixpoints can be 

“attractors” or “repellors”, depending on whether or not trajec-

tories starting in the neighborhood of I0 will converge. The separa-
tion of two trajectories starting at I0 and I0+I is given by 

 

     f| =|f(I0+I) - f(I0)|= |I|·|(df/dI)|     (5) 

 

 Hence, their initial separation grows or shrinks, depending on 

whether the derivative is larger or smaller than unity. Therefore, 
 

   
I I

df df
(I Attractor ) (I Repellor )

dI dI

   
 =  =   

   
0 0

0 01 1     (6) 

I

f(I)

I0 I1 I2 I3

Graphic Iteration

y(I) = I

 
Figure 6: Iterating a map 

by reflexion at diagonal. 
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In the case of the logistic map defined in Equ. 2, one calculates 
the fixpoint from the condition 

 

  I -  I2 = I  

 

leading to 

 I2 =  (−) 

and 

      IFixpoint =
−



1
                    (7) 

 

In addition, I = 0 is a trivial fixpoint, since f(0)=0. In the present 

application to a laser system, where I represents an intensity, the 
range of acceptable I values is the positive real axis. For example, 

for  = 2.5, the fixpoint is located at I = 0.6. The derivative of 

the function representing the logistic map,  
 

      df/dI = ·(1-2I)        (8) 

 
and  

 

      
I ( ) /

df

dI  


= −

 
= − 

  1

2       (9) 

 
is =0.5 and, hence, smaller than unity. Therefore, the above 

fixpoint is an attractor, i.e., all trajectories will converge to it.  

 
In the following, some calculations of the behavior of the laser 

amplifier are made with the mathematical software package 

MATHCAD {mathcad\Logistic_MAPi.MCD}, to demonstrate nu-
merically the different orderly or chaotic conditions for this system. 

 

The figure shows the   logistic map (see Equ. 4) and some 
related maps (for k≠1) of the kind 

                                  ( )
1

( ): 1
k

k kf x x x= −     (10) 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/mathcad/Logistic_MAPi.MCD
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where  is the gain or ampli-

fication factor already intro-
duced. The parameter k is a 

real "tuning" parameter 

deforming the symmetric lo-
gistic bell-shaped curve and 

shifting the maximum left or 

right of the symmetry point 
x = 0.5. This latter family of 

maps has properties similar 

to those of the logistic map. 
However, the numbers and 

values of the fixpoints can 

obviously be different and, 
therefore, also the iterative 

trajectories. Also shown in 

each graph is the "diagonal" 
y(x) = x. Intersections be-

tween the map and the func-

tion y indicate fixpoints of 
the map.  

 

The plots in Fig. 8 have 
been calculated with the 

MATHCAD software package 

{mathcad\Logistic_MAPi.MCD}. It illustrates the iterative trajec-
tories, i.e., the set of points  

 

                                 1

1

( , )i
i

i

f x

x


 −

−

 
=  

 
              (11) 

 

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Logistic Map (u = 2.5, k=1)

f  x ( )

y x( )

x  
 

 

1

0

f  x( )

y x( )

10 x

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Logistic Map (u = 2.5, k=0.75)

 
 

Figure 7: Two homologues of the logistic 

map, for different k values. 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/mathcad/Logistic_MAPi.MCD
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for the two maps plotted in Fig.8, and an initial value of x0 = 0.75. 

In both cases, the trajectory is attracted to the respective fixpoint, 

the intersection of the map f(, x) and y(x) = x. Taking a different 

initial value x0' will lead to trajectories that are slightly modified, 

in particular for the early iterates. However, these latter trajecto-

ries will also be attracted to the respective fixpoint of each map. 
The following discussion and numerical calculations pertain to the  

 

 
 

 

 
 

 

original logistic map with k=1, unless explicitly specified other-

wise. 
 

The above examples illustrate a stable behavior of the laser sys-

tem. It will settle down to a steady-state operation, once it has 
passed the initial oscillatory phase. By changing the gain factor , 

which can be accomplished by extracting more or less intensity out 

of the beam, the steady-state operating point (the fixpoint of the 
logistic map) will change. For small enough gains, there will be no 

fixpoint, except for the trivial fixpoint of x = 0. According to Equ. 

7, this is the case for  ≤ 1. Then, the stable operation point is the 

one with no output intensity: The laser extinguishes. 

Figure 8:Behavior of maps for different k and . 
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For  ≥ 3.0 the maps looks qualitatively the same as before for 

smaller values of . However, as seen in top panel of the figure, 

the trajectory changes in character. It does so, regardless of 

initial value x0. The trajectories are still attracted to the fixpoint 

but do no longer converge to it for n→ ∞. Instead, the system 
oscillates back and forth between two values x1 and x2, it has be-

come bistable. The lower panel of the figure illustrates this oscil-

lation. The process of developing such an instability is termed "bi-
furcation" or "frequency doubling".  

 

The first bifurcation for 
the logistic map occurs at 

 = 3.0. But this is not the 

only one. At  = 1.1 +6 = 

3.549, a second bifurca-

tion occurs. For slightly 

larger values of , the sys-

tem oscillates between 
four points x1 ,…, x4. This 

behavior of the system is 

illustrated in Fig. 9. After 
an oscillation with larger 

amplitude (0.887  0.355), 

there is always one with a 
slightly smaller amplitude 

(0.813  0.540). 

  

Already for slightly 

larger gain factors,  ≥ 

3.6, the period-doubling 
domain ends. The system 

shows an intermittent 

behavior, where time in-
tervals of periodic behav-

ior are interspersed with 

multi-stable or chaotic os-
cillations. Such behavior is 

illustrated in Fig. 9 for  = 

 

 Figure 9: Iterations for different values 

of the gain (amplification) factor . 
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3.61. Here, an initial chaotic behavior is followed by quasi-orderly 

periodic behavior for later iterations (approximately between i= 35 

and i =45). 

 
  

1.0

0

f  x
i



1000 i
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0

0.2

0.4

0.6
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1
u = 3.75,  Xo =0.361

1.0

0

f  x
i


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g i( )
xi

zi

4

0

g i( )

1001 i
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0

2

4

Figure 10: Sensitivity to initial conditions x0, for =3.75 (compare 

top 2 panels) and ratio of the two trajectory coordinates (bottom). 
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Increasing the gain factor even further, for  > 3.6, the system 

described by the logistic map behaves mostly chaotically, although 

there are some "windows" on the  axis where the laser exhibits 

regular or at least quasi-orderly behavior. Chaotic behavior is il-

lustrated on Fig. 10. Here, for  = 3.75, the iterations are shown 

for two slightly different initial conditions, x0 = 0.361 (top panel) 
and x0' = 0.362 (middle panel). The ratio of both, g(i) = xi/xi' is 

plotted in the bottom panel of Fig. 10. The irregular, chaotic char-

acter of both iterative trajectories is obvious from the two upper 
panels. Furthermore, the bottom panel demonstrates the sensi-

tivity to initial conditions of the system dynamics. 

It is also of interest to be able to make an analytical prediction 
how a system will behave, without numerical trials and errors. 

Specifically, one is interested in finding out how one can evaluate 

whether a system will behave orderly or chaotically, when there 
are periodic orbits on which the system settles after some finite 

time. To develop a stability criterion, one may examine simple 

one-dimensional classical mechanics, where the motion is driven 
by a potential V. Stationary states emerge in force equilibrium, i.e. 

where the potential gradient is zero. 

 
The upper case in the sketch of Fig.11 

depicts a stable situation, where two par-

ticles are driven toward the same (sta-
ble) equilibrium point (minimum of V), 

despite the fact that they started at 

slightly different initial positions. The tra-
jectories are attracted to the equilibrium 

point and even come to rest there, if 

there is some action equivalent to friction. 
Quite different is the behavior of the 

same particles, if they are placed on the 

top of a potential, which is also a point of 
(here, however, unstable) equilibrium. 

In this latter case, slightly different initial 

placement can lead to dramatically differ-
ent, diverging trajectories. Now, the par-

ticles tend to move away from the equilibrium point of V. An un-

stable equilibrium point represents a repellor.  

V

  Unstable Trajectories

Stable Trajectories

V

 
Figure 11: Stable and un-

stable equilibrium (sta-

tionary) states. 
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b.  Liapunov stability theory 

 
A generalization of the above illustration to iterative maps, 

based on the Liapunov exponent (or function) leads to an iden-

tification of chaotic domains. Assume again a one-dimensional 
map xn+1 = f(xn) and 2 neighboring initial starting points, x and 

(x+), with a small  > 0. After n iterations, the trajectories will be 

at points f n(x) and f n((x+)). One can then define the function 

 

        (,n) :=| f n(x)- f n((x+))| =: | |· e n           (12)  

 

This equation really defines the parameter , which is called the 

Liapunov exponent. It is obvious that for  > 0, the trajectories 

diverge exponentially with increasing number of iterations, while 

they converge for  < 0. 

 

The Liapunov exponent can be calculated realizing that 

 
           ln|{ f n(x)- f n((x+))}/  | =  n                 (13) 

 

and 
 

        (1/n)· ln|(df n/dx)|    (14)  

 
Furthermore, by definition of the iteration f n, 

 

   f n(x) = f (xn-1) = f(f (xn-2)) = f(f(f(xn-3))) = f(f(f (xn-4))) = ....., 
 

with x0 = x. Then, the chain rule for differentiation yields 

 

df

dx

df x

dx

dx

dx

df x

dx

dx

dx

dx

dx

n
n

n

n n

n

n

n

n
=  =   = =

−

−

− −

−

−

−

−( ) ( )
........

1

1

1 1

1

1

2

2

 

 
      dfn/dx= f ’(xn-1 )· f ’(xn-2 ) · f ’(xn-3 ) · f ’(xn-4) ··                         () 

 



 U N I V E R S I T Y   O F 

ROCHESTER 
DEPARTMENT OF CHEMISTRY 

Complexity/Chaos  W. U. Schröder 

 

16 

Here the derivatives are to be taken at the different points xn along 

the trajectory. With 

 

  
−

=

−

=

==
1

0

1

0

|)(|ln|)(|lnln
n

i

i

n

i

i

n

xfxf
dx

df
,                (16) 

 

one has finally for the Liapunov exponent : 

 

      

   

 

 

connecting the divergence or convergence of iterations with the 
derivatives of the function f at the individual iterations xi . A term 

i in the sum is positive, if there is divergence of the trajectories at 

point xi, while it is negative, 
when trajectories converge 

at this point. 

According to the above 
discussion, one expects that 

whenever a Liapunov ex-

ponent becomes positive, 
the motion is chaotic. Equ. 

8 explains why in the 

MATHCAD illustrations of the 
logistic map, different be-

havior resulted simply when 

the gain factor  was 

changed. This gain factor  

also controls the derivative 

of the function f in the neigh-
borhood of an intersection of 

the map f(x) with the func-

tion y(x) = x, making such 
an intersection a fixpoint, 

an attractor, or a repellor. 

 Figure 12 shows on top 
the iterates (fix or periodic 

 
  =  

=

−


1

0

1

n
f xi

i

n

ln| ( )|  

 

 
Figure 12: Asymptotic iterates and Lia-

punov exponent for the logistic map 

(r:=). 

(17) 
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points xn, for large n) for the logistic map and some of the re-

lated maps of the kind 

( )
1

( ): 1
k

k kf x x x= −             (10) 

 
defined earlier in this section. At the bottom of the figure, the Lia-

punov exponent is plotted for the logistic map (k = 1.0), both 

quantities plotted versus the gain factor . One observes a corre-

lation between the gain factors i, for which (i) = 0, and succes-

sive period doubling (bifurcation). Successive period doubling 

is a possible route to chaos in dynamical systems. The dis-
tance between successive bifurcations becomes increasingly 

smaller. Their scaling is 

given by the Feigenbaum 
numbers.  

 

n
n

n

n

Feigenbaum Scaling

r r const n

r

d
n

d









−




+

= − 

=

=

= −

=

1

, 1

3.5699456

4.66920160

, 1

2.502907875

 

 

Beyond  =  , the Lia-

punov exponent becomes generally positive, and the system be-
haves in general chaotically. For larger gains, chaoticity domi-

nates. However, one observes that there are intermittent regions, 

where  < 0 and, therefore, ordered motion exists (order within 

chaos). For a system described by an m-dimensional map, there 

is an m-dimensional surface of associated Liapunov exponents.  

 
Briefly some remarks concerning methods of analysis of maps, 

in particular the search for periodic orbits. Periodic points of period 

n of a map f can be deduced from the stable (attractor) fixpoints 

Figure 13: Bifurcation “tree” for the logistic 

map. 

(18) 
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of f n(x). Fixpoints are defined by fn(x)=x. They are attractors, 

when |df n/dx|≤1. Figure 14 illustrates the method for triple peri-

odic points for . Here one plots f 3(x) and checks 

whether there are tangent points of the curve with the diagonal 
y(x)=x. For tangent points, f 3(x)=x (fixpoint) and |df 3/dx|=1 (at-

tractor). In the case shown, intensities of approximately x=0.17, 

0.52, and 0.98 are visited by the system in sequence. 
  

 1.0 8+=

Figure 14:  

Search for period 

tripling in logistic 

map f with =3.828. 

Function f and iter-

ative trajectory 

(top). Finding 

fixpoints of function 

f3(x) as touching 

tangents (bottom).   
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The task of analyzing the behavior of systems described by 

maps reduces essentially to one of finding the special points of the 

map transformation, such as fixpoints and periodic points. Follow-
ing this, one is interested in the stability of the orbits in the neigh-

borhood of these points, i.e., whether the points represent attrac-

tors or repellors. The analysis is applicable to many classes of 
physical, chemical, and biological systems. Therefore, one needs 

criteria similar to what is offered by the Liapunov coefficient dis-

cussed above. This is achieved by casting the earlier observed re-

lations between Liapunov coefficient (or function) into a more gen-

eral mathematic formulation that can be adapted to individual 

cases. The following is adapted from Kondepudi & Prigogine. 
 

The concept of a stationary state of a system can be visualized 
with Fig. 11 illustrating stationary points on a potential. These 

points are defined by a perfect balance of forces, which add up to 

exactly zero at the equilibrium points of the potentials. The top 
panel of Fig. 11 shows a stable situation. If slightly displaced from 

the equilibrium point, the conservative forces will drive the system 

back to that point, which is obviously an attractor. The situation 
for the stationary point of the inverted potential shown at the bot-

tom of Fig. 11 is the reverse of that. That point is an unstable 

equilibrium point, a repellor of trajectories. 
 

The following discussion will assume a generic, multi-dimen-

sional system with k=1,2,…,r degrees of freedom (independent co-
ordinates). An example for such a system is a chemical reactor 

with several materials {A, B, C, D,…} present in different concen-

trations. Any intrinsic state X of that system will have values along 
all r degrees of freedom. In the example, the set of all concentra-

tions {[A], [B], [C], [D], …} defines the state. To define a system 

trajectory through an ensemble of states, one also needs the time 
rate of change of all coordinates.  

 

In the mathematical formalism, state X and its rate of change 
(Z) are each represented by a corresponding r-dimensional state 

vector, 
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( ) ( )= = =1 2 1 2andr r

d
X X ,X ,....,X X X Z X ,X ,....,X ;

dt   
(19) 

 

Rigorously, Z is a vector field, and  in Equ. 19 stands for additional 

parameters required to complete the equations of motion (19). 
Obviously, a stable (stationary) state Xs is time independent, which 

implies for each of its components Xsk that 

 

           ( )= = =1 2 0 1 2sk k s s sr

d
X Z X ,X ,....,X ; (k , ,....,r )

dt
          (20) 

  

For any two different states X’ and X”= X’+X, a distance 

 
                         L(X’, X”)=|X’-X”|=L(|X|) > 0                    

(21) 

 
can be defined, which has to be a positive function to make sense. 

It should not depend on the signs of individual variations 𝛿𝑥𝑘. In a 

one-dimensional system such as represented by the Logistic Map, 

this distance is simply the numerical difference of the nth iterate of 
two trajectories starting at different initial values. For two state 

vectors, one could use the quadratic difference between them, 

 

                        ( ) ( ) ( )   = = 
2

k
k

L X ,X L X : X                    (22) 

 

In general, one has to require of a stable state that the distance 

between it and a nearby state will decrease in time, hence, 
 

                                    0
d
L( X )

dt
                                 (23) 

 

Actually, Equs. 22 and 23 define a “Liapunov Function” or, in a 
more general case, a Liapunov functional.  
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As an illustrative example (Kondepudi & Prigogine), one may 

examine the kinetic equations describing a set of coupled chemical 

reactions taking place simultaneously in a chemical reactor: 
 

              

+ ⎯⎯→

+ ⎯⎯→

+ ⎯⎯→

1

2

3

k

k

k

S T A

S A B

A B P
      (24) 

Here, the quantities ki are the reaction constants. One is interested 
under what conditions a steady-state would result, producing a set 

of constant concentrations [A] and [B], which would then result in 

a constant stream of reaction products P.  
 

Interpreting the two interesting concentrations as the two coor-

dinates, X1= [A] and X2= [B], one derives the equations of motion 
for the concentrations, 

 

   

         ( )

     ( )

=   −   −   =

=   −   =

1 1 2 1 3 1 2 1

2 2 1 3 1 2 2

d
X k S T k S X k X X Z X , S , T

dt

d
X k S X k X X Z X , S , T

dt

   (25) 

 

In the above expression for dX1/dt the dependence on [S] and [T] 

is an example of what the parameter  in Equ. 19 represents.  

 

The conditions for stability are that the rates dXi/dt = 0, and 
therefore, starting with the second of the above two rates, one has 

 

                

 

 

= →   −   =

→   =  

2 2 1 3 1 2

2 1 3 1 2

0 0
d
X k S X k X X

dt

k S X k X X
            (26) 

and 

Figure 15: Chemical reaction system with intrinsic states defined by 

{[A].[B]}. 
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     

     

= →   −   −   =

→   =  

1 1 2 1 3 1 2

1 2 1
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Therefore, any stationary state has to satisfy 
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If it does, the state will either be in stable or unstable equilibrium 
(see Fig. 11). A stable state has to satisfy condition (23), namely 

that small variations X1 and X2 about the stable vector 

{Xs1,Xs2} should disappear in time. Hence, for a stable state,  
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d
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dt
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using the definition adopted for the distance function L, for exam-
ple that of Equ. 22. However, other equivalent definitions are ac-

ceptable. To test the validity of condition (29) for a given state, 

one can follow a simple procedure of inserting into Equ. (25) the 

expressions 

 

                           Xk(t) = (Xsk+Xk(t))    (k=1, 2)                 (30) 
 

Of course, the specific coordinates of the stationary state Xs are 

not time dependent. In linear approximation, one may neglect 

terms of higher order such as (Xk·X). One then gets expressions 

for d(Xk)/dt needed to test the condition of Equ. (29). 

 
 


